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SUMMARY 

In the present work the viscous (low Reynolds) flow in plane ducts confined by permeable walls has been 
studied. A simple model of the filtrating walls has been used, with the normal velocity component 
proportional to the pressure jump across the wall, resulting in a non-standard boundary value Navier- 
Stokes problem. 

A critical analysis of the appropriate boundary condition and pressure problem has led to the conclusions 
of employing a simple explicit finite volume approach, and of avoiding the use of higher order finite difference 
schemes. In this paper a special emphasis on the structure of the involved computational matrices has been 
given to illustrate the chosen algorithm. The latter yields a steady state solution that is second order accurate 
in space, and it has an accuracy in time of order ,<At (the time step), due to the explicit treatment of the 
velocity boundary conditions along the membrane. The model has been tested to study the effects of the 
inlet/outlet conditions, Reynolds number and filtrating wall constant. 

KEY WORDS F. D. for Navier-Stokes Mass Transfer Pressure Treatment 

INTRODUCTION 

Membrane technologies play a very important role in a variety of industrial, biomedical and 
biological applications. Confined flows by permeable walls are the object of detailed studies in 
environmental and chemical engineering. In most situations the performance of filters, the 
characteristics of sedimentation processes etc. are strongly influenced by the dynamics of the 
properties of such filtrating devices. The latter depend on heat and mass transfer as well as 
correlated electrochemical processes etc. 

The knowledge of the fluid dynamics plays a fundamental role for a deep understanding of these 
wall-controlled phenomena. In most of the situations flow details are required in regions where 
viscous effects are not negligible, moreover the associated Reynolds numbers do not allow a 
simplification of the Navier-Stokes equations that have here been applied in their complete form. 

In the present work the fundamental difficulties of treating boundary value problems (BVP) in 
the presence of a membrane have been examined for two-dimensional geometries. A special 
emphasis has been given to the problem of pressure determination and to develop a numerical 
algorithm that has successfully been tested on a personal computer, the HP-9826. 
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THE MODEL 

Duerential model 

wall has been studied by applying the classical incompressible Navier-Stokes (NS) equations: 
In the present work the laminar incompressible plane flow motion in the presence of a filtrating 

) i n n  
v, = r - V p  

V'V = o  
where 

r(v) = - v.Vv t V2v /Re  

On BR (the contour of the domain a) different types of boundary conditions have to be satisfied by 
the solution. Let BR be equal to 

BR= BQi 
i =  1.4 

with 
ifj+BQinBQj=12( 

where BR,, B!&, BR,, BQ, represent respectively the inflow, outflow, membrane and solid wall 
boundaries (see Figure 1). 

For a simple modelling of the membrane the normal velocity component is assumed to be 
proportional to the pressure jump across the membrane;' i.e. 

on BR, 
S'V = 0 

n v  = k p  

where s and n are, respectively, the unit tangent and normal vectors, and k 2 0 is the filtrating 
constant. 

Some physical and mathematical remarks on the pressure problem 

To understand the motivation of the selected solution algorithm (that will be discussed in the 
next section), it is useful to make some physical and mathematical considerations on the problem of 
the pressure determination. 

The model described above introduced a non-standard BVP. In most of the classical boundary 

Figure 1. Computational geometry 
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value NS (BVNS) formulations, the pressure field is determined only by a constant. This is no 
longer valid in the present model, as equation (2) clearly indicates. 

To the authors’ knowledge theoretical closure aspects (such as existence, uniqueness, well- 
posedness), connected with the model problem (equations (1) and (2)), are not yet resolved. 
However such a remark still applies when strong solutions of other classical BVNS problems are 

The theoretical closure of the present problem is not immediate even in a weak sense. The reason 
being that the velocity field is generally the only unknown of the classical weak formulations, 
and/or the pressure is introduced to satisfy the solenoidality constraint. Moreover the boundary 
conditions imposed to determine such a pressure are not the ‘exact’ ones.3 In standard BVNS 
problems this may not be a critical point since (by using an appropriate algorithm) the 
computation of a pseudo-pressure does not affect the (asymptotic) convergence of the velocity 
vector field. 

In conclusion, the peculiar pressure-velocity correlation along the membrane (equation (2)) 
would require further investigations in the theory of NS weak formulation, but this is outside the 
scope of the present work. On the other hand, for a correct numerical modelling, it is necessary to 
analyse some of the fundamental questions that are typical of weak/strong formulations. More 
specifically the meaning of what it is (or could be) intended for the ‘exact’ pressure b.c. is directly 
related to such questions. It is indeed useful to characterize once and for all the consequences of 
some smoothness assumptions when strong solutions of general BVNS problems are assumed to 
exist. This is also instructive for the increasing use of higher order finite difference schemes as well 
as self-adaptive algorithms that are mainly based on the existence and regularity of higher order 
derivatives of the original equations6 

It is common practice to consider the following Poisson-like equation for p (formally obtainable 
by taking the divergence of the momentum equation); 

V2p = V-r  (3) 

Paradoxes may arise if the b.c.s for the above equation are not properly prescribed. 
If smoothness assumptions are extended to the (solid) boundary, from equation (1) one has: 

where PER and PWcBR. 
One might be tempted to use such an equation to obtain ( V P ) ~ .  Indeed deducing r as the limit 

from the interior, when v, is assigned on BR, equation (4) formally allow one to determine the 
pressure boundary conditions. However the validity,of the equality established in equation (4) by 
the limit process is rather dubious and, on solid walls, there are no physical justifications for it, at 
least for the tangential component. A number of inconsistencies are produced as a consequence of 
the assumptions implied in equation (4) (often accepted or made by several  authors'^^). Indeed the 
normal derivative (n-Vp)w can be obtained from equation (4) and therefore the pressure is 
determined up to a constant. Incompatibility effects can arise because the tangential derivative of 
the computed p does not necessarily equal ( s ~ V p ) ~ ,  as obtained from equation (4): the freedom in 
the assignment of(s.v,), allows one to select a value of the tangential velocity different from the one 
obtained by extrapolating (assuming continuity) the interior values. 

By assuming further smoothness properties, the redundancy of the b.c. for Vp (as obtained from 
equation (4)) could be formally eliminated in the way that will be shown next. But another paradox 
may arise. By taking the gradient of equation (3), the determination of the pressure forces g( 3 Vp) 
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can be reduced to the solution of the following uncoupled elliptic equations: 

with Dirichlet boundary condition on BR given by equation (4). 
By definition g is a conservative vector field, i.e. V x g = 0 in Q. By taking the curl of equation (5) 

it results that V x g is harmonic. Therefore the solution of equation (5) yields a conservative field if 
and only if 

Vxg=O,  onBQ (6) 
(if R is a simply connected region). 

It can be shown that by using only the normal component of equation(4), together with 
equation (6)) boundary conditions (for g) can be obtained that guarantee a lamellar g field as the 
solution of equation (5). However a paradox may arise because a value of (s*g)w different from 
(s*r)W-(s-vt)W, as obtained from equation (4), may result, for the freedom in the assignment of 

In conclusion the above paradoxes indicate that some smoothness properties have to be 
removed. Physical considerations (mass conservation) and the knowledge of the theory of partial 
differential equations suggest that continuity properties of the normal velocity components on BR 
must be maintained. Hence smoothness assumptions are relaxed for the tangential velocity 
component. 

For the specific membrane confined flow only the boundary conditions for the normal velocity 
component are modified with respect to the classical BVNS problems. The above conclusions still 
apply as far as the tangential pressure gradient is concerned. The limit of the normal component of 
equation (4) along the membrane has been assumed in the form 

(S * V J W .  

Equation (7) is still a Neumann condition for p having defined the first term as the limit of the left- 
time derivative, and again most of the previous considerations remain. 

Finite volume equations and computational matrices structures 

In the light of the above considerations, to avoid dubious pressure boundary conditions, the 
pressure has not been computed by solving a Poisson-like equation. Instead an algebraic pressure 
equation has been solved by imposing the condition that the mass is conserved in every 
computational volume (of course in the limit of Ax, Ay -+ 0 it can be shown that the algebraic 
pressure equation is consistent with a Poisson-like one). 

The governing equations have been discretized according to a local balance approach with a 
particular choice of finite  volume^.^ With such a choice no dubious boundary conditions are 
imposed and no special treatment is required along the membrane. The computational domain has 
been discretized using a grid with the following properties (see Figure 1): (i) constant step size; (ii) 
cell aspect ratio equal to one; (iii) both unknown velocity components defined at the grid nodes, 
and pressure staggered both along x and y ;  (iv) physical boundaries not staggered with respect to 
grid lines. 

The finite difference equations have been obtained choosing as control volume (for both velocity 
components) a square cell centered around a grid node, and for mass conservation the natural grid 
cell centered around the ‘pressure’ nodes. The assumed finite difference formulae for internal nodes 
(i, j) are: 
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where ip = i + 1, irn = i - 1, and similarly for the j s ;  a =  At/4Ax, f i  = At/ReAx2, np  = n + 1. It can be 
shown that equations @)-(lo) are second order accurate in space. 

The assumed finite difference boundary conditions are: 

on BR3 
n-(v",Pij = (kipG + ki,p:mj)/2 
S . ( V " P ) . .  = 0 

m 1~ 

where v, is the velocity on the membrane. 
On BQ4 no slip b.c.s are imposed; on BQ, and BR, the following conditions have been imposed: 

on BQ, I v = b, = given 
p = p 1  = given 

v = a2b2, on BR, 

where b2 is an assumed shape function and a2 is a real parameter so as to satisfy global mass 
conservation. A parabolic shape function can be reasonably assumed for a sufficient length of the 
impermeable wall ducts. 

In a 'quasi'-matrix form the above equations are 

0 0 -2v).(;)+@ (12) ;)*(;J=(+y Vm -M, 0 
where B and G are linear operators (corresponding to the 'discretized' divergence and gradient 
operators); A(v) is a non-linear operator (the discretization of r); B,, and M, represent the effects of 
the membrane; c1 and c2 account for non-conservative external forces and boundary conditions, 
respectively. 

From equations @)-(lo) observe that Gij = - Bji (this can also be verified by applying graph 
theory representation). Hence G = - BT and therefore the finite difference forms of the divergence 
and - gradient operators are still adjoint. 

The pressure equation 

following system: 
From equation (12) observe that the velocity and pressure unknowns are the solution of the 

I + A t A  0 (k -Y')'(i>^"=( 0 0 
. I  

Let T be the following non-singular matrix: 

T = (  - B  I 0) I 

The matrix form of the pressure equation can be obtained by premultiplying equation (1 3) by T, 
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obtaining 

(14) 
I + AtA (i -L:iT)'( n>"'= ( -B(I+AtA)  0 

Because of the reducibility of the above system the following pressure equation has to be solved: 

AtB.BT*pnP MpnP = B(1 + AtA)v" + C; (15) 

The algebraic properties of the pressure matrix M and the correlation of the above system to the 
equivalent differential BVP play an important role in the proposed algorithm. The algebraic 
properties of M strictly affect the computational effort to obtain p .  First of all symmetry and 
semipositive definiteness of M are guaranteed by definition. Secondly with an appropriate 
reordering (separation of odd/even pressure unknowns, see Figure 2) it becomes a two-block- 
diagonal matrix and it satisfies property A. Hence two uncoupled systems for odd and even ps are 
obtained with obvious gain in the required computational effort. 

In matrix form one has: 

where the odd/even pressure matrices ( M / M )  are still symmetric and semipositive definite. 
Observe that such a decoupling can be exploited readily when symmetries are present. Indeed, 

instead of halving the domain 51, one can equivalently solve for only one of the two pressure 
systems, and obtain the other one by symmetry, provided that an even number of cells is chosen in 
the direction normal to the centre line. This approach has the advantage that one can avoid any 
numerical treatment of the symmetry boundary conditions. 

It can be shown that the existence of the solution, as well as the solenoidality of the velocity field, 
is guaranteed by imposing 

C(rnijY = 0 
i j  

where mij is the mass flux. 
To rule out zero eigenvalues (vanishing of an eingenvalue is typical of physical situations where p 

is determined only by a constant) at least a reference pressure has to be imposed in an even and odd 
cell. This makes the above matrices positive definite. 

Figure 2. Eveniodd pressure decoupling 
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Figure 3. Wall cell for pressure boundary condition 

The advantages of these algebraic properties can thus be exploited in the computational effort 
for solving the even and odd pressure system (equations (16)). 

The difference formulae chosen for evaluating the pressure gradient in equations (8) and (9) 
guarantee that the two systems do not get out of phase. Indeed the 'discrete' pressure gradient is not 
affected by the reference values, since it is evaluated as the (vector) sum of the two gradients along 
the diagonals of the momentum control volume, each of which is obtained by using only even or 
odd pressure values. Thus the effects of an incorrect choice of the reference pressures are 
eliminated. Furthermore the 'discrete' pressure/velocity correlation along the filtrating wall 
(equation (11)) also eliminates the possibilities that the two pressure systems get out of phase, 
because the membrane velocity is calculated as the average of the two pressures at two adjacent p -  
nodes. 

It is worth noticing that each of these systems is consistent with a coarser mesh discretization of 
an elliptic pressure equation, in agreement with the results of others'' that showed the advantages 
of using a coarser discretization for evaluating pressure gradients to guarantee numerical kinetic 
energy conservation. 

It is interesting to discuss the structure of the rows of M'(M") corresponding to the mass balance 
along the boundary cells to understand in differential terms the equivalent boundary conditions for 
p. Near a wall (see Figure 3) one has 

(17) 

It is simple matter to verify that the above equation amounts to imposing the normal derivative 
boundary condition for p ,  given in equation (3). No tangential pressure derivative on the boundary 
is involved, consequently the danger of inconsistent results is avoided. 

Observe that once the odd (even) pressures are obtained, half of the unknown pressure gradient 
components are numerically determined on the grid nodes. This is in the spirit of the solution of 
equation (5). 

Moreover, with the present scheme the two discretized pressure derivatives are obtained by 
applying central difference formulae that operate separately on odd and even pressure unknowns. 
An important consequence is that if the odd/even pressures are determined only by a constant 
the velocity field is still correctly computed. This allows a simple optimization of the iterative 
solution by assuming the vanishing of an appropriate norm of the residual of the pressure equation 
as a constraint with the target of the minimum of (1 pnP - p" I( . 1 2 9 1 3  

- 2 p 3  + P I  + p 2  = ((Av"); - (Av"); - (Av"): - (AV"); + (Bv")~/A~)/AY 

Regularization method 

the convergence rate,I4 has been employed for the pressure equation (15). 
A successive over-relaxation technique (SOR), with an optimized relaxation factor to improve 

For the algebraic properties of M such a convergence is always guaranteed. However as the 



1034 R. ALBANESE, F. GRASS0 AND C. MEOLA 

mesh size decreases the spectral radius of the iteration matrix approaches one and the rate of 
convergence becomes critical. 

To reduce such problem, a regularization method has been employed, yielding the following 
modified equation: 

(M + 0 1 ) ~ " ~  = M*, pnP = q + op" (18) 

M* is still symmetric, positive definite, with a two-block-diagonal structure. Moreover it has a 
strong diagonal dominance with an obvious increase in the rate of convergence of the SOR 
algorithm. 

Observe that by such an approach a pseudo-incompressible Navier-Stokes problem is solved 
(in analogy with Chorin's method), since the solenoidality is reached only at steady state. Indeed 
the mass conservation equation changes into the following balance equation: 

where a = oAt. 
The optimum value of the regularization parameter c is the one that minimizes the total number 

of iterations N x I ,  where N and I are, respectively, the number of time steps to reach the steady 
state and the characteristic number of SOR iterations for the pressure. 

The previous considerations show the strong correlations between matrix regularization, 
penalty, mass balance perturbation (Chorin) methods, etc. 

RESULTS 

The Newtonian flow motion confined by filtrating walls in two-dimensional planar geometries has 
been studied by applying an algorithm that exploits the simplicity of a fully explicit method. The 
effects of different filtrating constant and Reynolds number have been explored. The values of the 
parameters are given in Table I. The domain has been discretized with constant spacing in x and y ,  
and all the results here discussed have been obtained on a grid consisting of 36 x 12 cells. In all 
cases a fully developed laminar (FDL) flow has been assumed at inflow and outflow: a FDL flow 
can be reasonably assumed in these regions, when Re i 10, because of the selected lengths of the 
inlet and outlet ducts. For all cases, but for Re = 100, the computed results show an excellent 
agreement of the velocity and pressure distributions with the FDL flow solution (note that the lack 
of orthogonality of the streamlines along the membrane is only due to poor graphics). All the 
computations were performed on a personal computer HP-9826, and the CPU time was of the 
order of one hour per case. 

Table 1. Computational parameters 

Case No. Re R 

1 10 10-3 
2 10 1 0 - 2 . 7 5  

3 
4 10 
5 10 1 0 - 2  

10 10-25 
1 0 - 1 . 2 5  

6 I 10-3 
I 100 10-3 
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Effects of the filtrating constant 

Figures 4-8 show the computed pressure and streamline contour plots for different values of the 
filtrating constant k (ranging from by keeping constant both the inlet reference 
pressure and mass flow rate. Under these conditions it is observed that as k increases a flow reversal 
arises, as Figure 8 clearly shows. In Figure 8 the shear stress (2) at the wall is plotted. The computed 
results show that for small values of k the variation of z along x is negligible, but it becomes large as 
k increases, especially near the transition points (from solid to permeable walls and vice versa). In 
the central zone of the membrane a linear variation appears. Furthermore it is interesting to note a 
similarity of the profiles for the different values of k. Finally Figure 8 shows that a change in the sign 
of the shear stress can arise even if there is no flow reversal at the outlet. 

to 

Eflect of the Reynolds number 

In Figures 4,lO-12 the effects of the Reynolds number (values ranging from I to 100) are shown 
for a constant value of k, and fixed values of the reference pressure and mass flow rate at inlet. The 
results indicate that a change in the Reynolds number affects mainly the pressure field, with slight 
effects on the deformation rate along the wall (see Figure 12). 

Figure 4. Contour plots of streamlines (a), and pressure (b) for Case 1 
(b) 
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Figure 5. Contour plots of streamlines (a), and pressure (b) for Case 2 
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Figure 6. Contour plots of streamlines (a), and pressure (b) for Case 3 



(b) Figure 7. Contour plots of streamlines (a), and pressure (b) for Case 4 

/ / / / / / / / 7 7 7 / / / / / / / / 7 / / / A  ~\~\\\\~\\\\\\\\\\\\\\\\ 

(b) Figure 8. Contour plots of streamlines (a), and pressure (b) for Case 5 



UY 

6 

5 

4 

3 

2 

1 

0 

- 1  

-2 

-3 

\ \  

I I  

-3 
-2.75 

-2.5 

-2.25 

> 
X 

\ 

I \ 

Figure 9. Tangential stress stribution along the wall for different values of log k 
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Figure 10. Contour plots of streamlines (a), and pressure (b) for Case 6 



Figure 11. Contour plots of streamlines (a), and pressure (b) for Case 7 
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Figure 12. Tangential stress distribution along the wall for different values of Re 
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Regularization 

The regularization method has been tested for different values of CJ (which is effectively the 
reciprocal of the Lagrange multiplier) for the conditions corresponding to Case 1. In Figure 13 the 
CPU time (min) is plotted vs (T. Such a CPU time accounts also for the computational time that is 
required to determine the optimized SOR factor. Figure 13 shows that the CPU time reaches a 
minimum for a value of (T around 2. However such a value is only an indication of the efficiency of 
the method, since in all cases the stiffness of the pressure matrix was not critical (the advantages of 
the regularization are more evident for meshes finer than the ones employed in the present work). 

CONCLUSIONS 

In the present work a finite difference method for the solution of the two-dimensional 
incompressible laminar Navier-Stokes equations, in the presence of permeable walls, has been 
developed and tested. 

First the problem of the (finite difference) pressure treatment in standard and non-standard 
boundary value NS problems has been critically discussed. Incompatibility effects have been 
shown to arise owing to an incorrect prescription of the boundary conditions, when one closes the 
problem of the pressure determination by solving an analytical equation for p. Instead, an 
algebraic equation (obtained by imposing the conservation of mass in every computational 
volume) has been shown to be preferable, since a dubious pressure b.c. can be avoided. The method 
is computationally very efficient. Indeed, the non-classical staggering of pressure and velocity here 
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Figure 13. CPU time (in min) vs (I 
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employed yields a decoupling of the pressure unknowns in even and odd ones, with an obvious 
reduction in the computational effort. 

The algorithm has been tested in simple planar geometries, where inflow/outflow, solid and 
filtrating wall b.c.s are present. The adequacy of the computed results indicate that the method 
yields a good description of the steady state. The transient is not properly represented, mainly due to 
the explicit treatment of the pressure/velocity correlation along the membrane. To eliminate such 
an artificial delay, an implicit treatment of the filtrating wall b.c. needs to be investigated. 
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